Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.943
Filtrar
1.
Front Immunol ; 15: 1232070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638443

RESUMO

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Humanos , Células de Kupffer/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Interleucina-13/metabolismo , Secretoma , Macrófagos , Cirrose Hepática , Células Matadoras Naturais/metabolismo
2.
Front Immunol ; 15: 1361139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482017

RESUMO

Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation.


Assuntos
Epiderme , Linfócitos T , Animais , Camundongos , Linfócitos T/metabolismo , Epiderme/metabolismo , Interleucina-13/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497670

RESUMO

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Assuntos
Hipersensibilidade Alimentar , Mastócitos , Humanos , Mastócitos/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Inflamação/metabolismo , Degranulação Celular
4.
Mol Immunol ; 167: 16-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310669

RESUMO

Asthma is a common chronic respiratory disease characterized by Th2-type inflammation in the airways. Leucine zip transcription factor-like 1 (LZTFL1) has been implicated in the regulation of Th2-related factors. The knockdown of LZTFL1 resulted in decreased levels of IL-4, IL-5, and IL-13. We hypothesize that LZTFL1 may have an effect on asthma. We established an acute asthmatic mouse model using the Ovalbumin (OVA) sensitization, and we found that LZTFL1 expression was upregulated in OVA-induced CD4 + T cells. Mice challenged with OVA were administered 5 × 107 TU of lentivirus via tail vein injection. LZTFL1 knockdown reversed the frequency of sneezing and nose rubbing in OVA mice. LZTFL1 knockdown reduced inflammatory cell infiltration, reduced goblet cell numbers, and mitigated collagen deposition in lung tissue. LZTFL1 knockdown decreased the levels of OVA-specific IgE, IL-4, IL-5, and IL-13 in alveolar lavage fluid of asthmatic mice. Furthermore, LZTFL1 knockdown inhibited the aberrant activation of MEK/ERK signaling pathway in asthmatic mice. GATA binding protein 3 (GATA3) is an essential transcription factor in Th2 differentiation. Flow cytometry results revealed that LZTFL1 knockdown reduced the number of GATA3 + CD4 + Th2 cells, while it did not affect the stability of GATA3 mRNA. This may be attributed to ERK signaling which stabilized GATA3 by preventing its ubiquitination and subsequent degradation. In conclusion, LZTFL1 knockdown attenuates inflammation and pathological changes in OVA-induced asthmatic mice through ERK/GATA3 signaling pathway.


Assuntos
Asma , Interleucina-13 , Animais , Camundongos , Anti-Inflamatórios/metabolismo , Asma/induzido quimicamente , Asma/genética , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5 , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Transdução de Sinais , Células Th2 , Fatores de Transcrição/metabolismo , Sistema de Sinalização das MAP Quinases
5.
Discov Med ; 36(181): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409842

RESUMO

BACKGROUND: Allergic asthma (AA) is a prevalent chronic airway inflammation disease. In this study, this study aims to investigate the biological functions and potential regulatory mechanisms of the insulin receptor (INSR) in the progression of AA. METHODS: BALB/c mice (n = 48) were randomly divided into the following groups: control group, AA group, AA+Lentivirus (Lv)-vector short hairpin RNA (shRNA) group, AA+Lv-vector group, AA+Lv-INSR shRNA group, and AA+Lv-INSR group. The pulmonary index was calculated. mRNA and protein expression levels of INSR, signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 (JAK2), phosphorylated-STAT3 (p-STAT3), phosphorylated-JAK2 (p-JAK2), alpha-smooth muscle actin (α-SMA), febrile neutropenia (FN), mucin 5AC (MUC5AC), and mucin 5B (MUC5B) were examined using reverse-transcription quantitative PCR (RT-qPCR) and western blot assays. Positive expressions of INSR, retinoic acid-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) were quantified by immunohistochemistry. Fluorescence intensities of α-SMA and FN were detected by immunofluorescence. Pathological morphology was observed through hematoxylin-eosin (H&E) staining, Masson staining, and Periodic Acid-Schiff (PAS) staining. Contents of immunoglobulin E (IgE), interleukin-6 (IL-6), eotaxin, interleukin-4 (IL-4), interleukin-13 (IL-13), interferon-γ (IFN-γ), interleukin-17 (IL-17), and interleukin-10 (IL-10) were quantified using enzyme-linked immunosorbent assay (ELISA). The percentage of T helper 17 (Th17) and regulatory T (Treg) cells was determined through flow cytometry. RESULTS: Compared to the control group, expression levels of INSR, p-STAT3, p-JAK2, α-SMA, FN, MUC5AC, MUC5B, RORγt, and Foxp3, as well as IgE, IL-6, eotaxin, IL-4, IL-13, and IL-17 contents, pulmonary index, glycogen-positive area (%), and Th17 cell percentage significantly increased (p < 0.05). Additionally, pulmonary histopathological deterioration and collagen deposition were aggravated, while Treg cell percentage and IFN-γ and IL-10 contents remarkably decreased (p < 0.05). The overexpression of INSR further exacerbated the progression of allergic asthma, but the down-regulation of INSR reversed the trends of the above indicators. CONCLUSIONS: The down-regulation of INSR alleviates airway hyperviscosity, inflammatory infiltration, and airway remodeling, restoring Th17/Treg immune balance in AA mice by inactivating the STAT3 pathway.


Assuntos
Asma , Interleucina-10 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Regulação para Baixo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Asma/metabolismo , Asma/patologia , Imunoglobulina E/genética , Imunoglobulina E/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Interferente Pequeno
6.
Int Immunopharmacol ; 130: 111713, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38387192

RESUMO

Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.


Assuntos
Asma , Células-Tronco Mesenquimais , Ratos , Animais , Camundongos , Interleucina-13/metabolismo , Asma/tratamento farmacológico , Pulmão/patologia , Citocinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Inflamação/metabolismo , Quimiocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Th2 , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Receptor Notch1/metabolismo
7.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422654

RESUMO

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Assuntos
Asma , Dictamnus , Fator 3-beta Nuclear de Hepatócito , Fator de Transcrição STAT3 , Camundongos , Humanos , Animais , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ovalbumina , Modelos Animais de Doenças , Asma/induzido quimicamente , Asma/tratamento farmacológico , Pulmão , Inflamação/metabolismo , Muco/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismo
8.
Eur J Med Res ; 29(1): 102, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321559

RESUMO

OBJECTIVE: To explore the mechanism of huankuile (HKL) in colon injury repair in rats with ulcerative colitis (UC). METHODS: Fifty SPF Wistar male rats were divided randomly into a normal group, a negative control group, an HKL intervention group ('HKL group') and a 5-aminosalicylic acid intervention group ('5-ASA group'). After 14 days of intervention with corresponding drugs, pathological scores were obtained using the results of immunohistochemical staining; morphological changes were observed by hematoxylin-eosin staining, and the mRNA expression levels of tumour necrosis factor-α (TNF-α), matrix metalloproteinase 9 (MMP9) and interleukin-13 (IL-13) were detected by real-time quantitative PCR. RESULTS: After the successful construction of the rat model, it was compared with the rats in the normal group. In the negative group, it was found that the expression of TNF-α and MMP9 was significantly increased in the colonic mucosal epithelia of the rats, the pathological score was significantly increased (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were increased (P < 0.05). After treatment with HKL, the colonic morphology of the rats returned to normal, the expression of TNF-α and MMP9 in the colonic mucosal epithelium of the rats returned to normal, the pathological score grade was significantly reduced (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were reduced; these results were largely consistent with those of the normal group, with no statistically significant difference. CONCLUSION: HKL effectively improved the general symptoms and tissue injury in UC rats, and the therapeutic effect was better than that of 5-ASA group. Ulcerative colitis in rats increased the expression of TNF-α, MMP9 and IL-13. HKL repaired UC-induced colonic injury in rats by decreasing the expression of TNF-α, MMP9 and IL-13.


Assuntos
Colite Ulcerativa , Traumatismos Torácicos , Animais , Masculino , Ratos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/metabolismo , Interleucina-13/metabolismo , Interleucina-13/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Mesalamina/metabolismo , Mesalamina/uso terapêutico , Ratos Wistar , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética
9.
Mol Biol Rep ; 51(1): 319, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388914

RESUMO

OBJECTIVE: The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD: A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT: On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION: To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.


Assuntos
Artemisia , Rinite Alérgica Sazonal , Rinite Alérgica , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ovalbumina , Interleucina-13/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-5/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Pólen , Imunoglobulina E/metabolismo , RNA Mensageiro
10.
Int Immunopharmacol ; 130: 111712, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377858

RESUMO

Cutaneous drug reactions (CDRs) are common drug-induced allergic reactions that cause severe consequences in HIV/AIDS patients. The CCL17/CCR4 axis is involved in the immune mechanism of allergic diseases, but its role in the CDRs has not been determined. Here, we aimed to determine the role of the CCL17/CCR4 axis and the underlying mechanism involved in CDRs. In this study, the serum cytokine levels in patients with CDR and healthy controls were measured. The CCL17-triggered allergic profile was screened via a PCR array. Apoptosis of keratinocytes cocultured with CCL17-stimulated Th2 cells was analyzed by flow cytometry. An NVP-induced rat CDR model was established, and dynamic inflammatory factor levels and Th2 cells in the peripheral blood of the rats were measured. Rat skin lesions and signaling pathways in Th2 cells were also analyzed. We showed that the serum CCL17 level was significantly upregulated in CDR patients (P = 0.0077), and the Th2 cell subgroup was also significantly elevated in the CDR rats. The CCL17/CCR4 axis induces Th2 cells to release IL-4 and IL-13 via the ERK/STAT3 pathway. The CCR4 antagonist compound 47 can alleviate rash symptoms resulting from NVP-induced drug eruption, Th2 cell subgroup, IL-4, and IL-13 and inhibit keratinocyte apoptosis. Taken together, these findings indicate that the CCL17/CCR4 axis mediates CDR via the ERK/STAT3 pathway in Th2 cells and type 2 cytokine-induced keratinocyte apoptosis.


Assuntos
Interleucina-13 , Células Th2 , Humanos , Ratos , Animais , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Receptores CCR4/metabolismo , Quimiocina CCL17/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Vet Res ; 55(1): 25, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414039

RESUMO

Stem cell-derived organoid cultures have emerged as attractive experimental models for infection biology research regarding various types of gastro-intestinal pathogens and host species. However, the large size of infectious nematode larvae and the closed structure of 3-dimensional organoids often hinder studies of the natural route of infection. To enable easy administration to the apical surface of the epithelium, organoids from the equine small intestine, i.e. enteroids, were used in the present study to establish epithelial monolayer cultures. These monolayers were functionally tested by stimulation with IL-4 and IL-13, and/or exposure to infectious stage larvae of the equine nematodes Parascaris univalens, cyathostominae and/or Strongylus vulgaris. Effects were recorded using transcriptional analysis combined with histochemistry, immunofluorescence-, live-cell- and scanning electron microscopy. These analyses revealed heterogeneous monolayers containing both immature and differentiated cells including tuft cells and mucus-producing goblet cells. Stimulation with IL-4/IL-13 increased tuft- and goblet cell differentiation as demonstrated by the expression of DCLK1 and MUC2. In these cytokine-primed monolayers, the expression of MUC2 was further promoted by co-culture with P. univalens. Moreover, live-cell imaging revealed morphological alterations of the epithelial cells following exposure to larvae even in the absence of cytokine stimulation. Thus, the present work describes the design, characterization and usability of an experimental model representing the equine nematode-infected small intestinal epithelium. The presence of tuft cells and goblet cells whose mucus production is affected by Th2 cytokines and/or the presence of larvae opens up for mechanistic studies of the physical interactions between nematodes and the equine intestinal mucosa.


Assuntos
Interleucina-13 , Nematoides , Animais , Cavalos , Interleucina-13/metabolismo , Interleucina-4 , Células Caliciformes , Mucosa Intestinal
12.
Mol Immunol ; 168: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422887

RESUMO

Allergic rhinitis (AR) is caused by immunoglobulin E (IgE)-mediated reactions to inhaled allergens, which leads to mucosal inflammation and barrier dysfunction. The transcription factor forkhead box C1 (FOXC1) has been identified to be associated with allergic inflammation. This study sought to uncover the role of FOXC1 in AR. A murine model of AR was induced by repeated intranasal ovalbumin (OVA) challenges. Results revealed that high FOXC1 expression was found in the nasal mucosal epithelium of AR mice. Nasal allergy symptoms, mucosal epithelial swelling, goblet cell hyperplasia and eosinophil infiltration in AR mice were attenuated after silencing of FOXC1. Knockdown of FOXC1 decreased the levels of T-helper 2 cytokines interleukin(IL)-4 and IL-13 in nasal lavage fluid, and serum OVA-specific IgE and histamine. Silencing of FOXC1 restored nasal epithelial integrity in AR mice by enhancing the expression of tight junctions (TJs) and adherence junction. Furthermore, knocking down FOXC1 increased tight junction expression and transepithelial electrical resistance (TEER) in IL-13-treated air-liquid interface (ALI) cultures of human nasal epithelial cells (HNEpCs). Mechanistically, silencing of FOXC1 induced DNA methylation of secreted frizzled-related protein 5 (SFRP5) promoter and increased its expression in the nasal mucosa of AR mice and IL-13-treated ALI cultures. FOXC1 overexpression transcriptionally activated DNA methyltransferase 3B (DNMT3B) in IL-13-treated ALI cultures. Knockdown of SFRP5 reversed the protection of FOXC1 silencing on epithelial barrier damage induced by IL-13. Collectively, silencing of FOXC1 reduced allergic inflammation and nasal epithelial barrier damage in AR mice via upregulating SFRP5, which may be attribute to DNMT3B-driven DNA methylation. Our study indicated that FOXC1 may represent a potential therapeutic target for AR.


Assuntos
Rinite Alérgica , Proteínas Secretadas Relacionadas a Receptores Frizzled , Animais , Humanos , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Interleucina-13/metabolismo , Camundongos Endogâmicos BALB C , Mucosa Nasal/metabolismo , Ovalbumina/metabolismo , Rinite Alérgica/genética , Rinite Alérgica/tratamento farmacológico
13.
Life Sci ; 341: 122476, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296190

RESUMO

AIMS: To identify whether and how a younger systemic internal milieu alleviates acute kidney injury (AKI) in grafts after kidney transplantation. MATERIALS AND METHODS: We conducted an allogenic heterotopic rat kidney transplantation model with young and adult recipients receiving similar donor kidneys. We evaluated the renal function, histological damage, apoptosis, dedifferentiation, proliferation, hub regulating cytokines, and signaling pathways involved in young and adult recipients based on transcriptomics, proteomics, and experimental validation. We also validated the protective effect and mechanism of interleukin-13 (IL-13) on tubular epithelial cell injury induced by transplantation in vivo and by cisplatin in vitro. KEY FINDINGS: Compared with adult recipients, the young recipients had lower levels of renal histological damage and apoptosis, while had higher levels of dedifferentiation and proliferation. Serum IL-13 levels were higher in young recipients both before and after surgery. Pretreating with IL-13 decreased apoptosis and promoted regeneration in injured rat tubular epithelial cells induced by cisplatin, while this effect can be counteracted by a JAK2 and STAT3 specific inhibitor, AG490. Recipients pretreated with IL-13 also had lower levels of histological damage and improved renal function. SIGNIFICANCE: Higher levels of IL-13 in young recipients ameliorates tubular epithelial cell apoptosis and promotes regeneration via activating the JAK-STAT signaling pathway both in vivo and in vitro. Our results suggest that IL-13 is a promising therapeutic strategy for alleviating AKI. The therapeutic potential of IL-13 in injury repair and immune regulation deserves further evaluation and clinical consideration.


Assuntos
Injúria Renal Aguda , Transplante de Rim , Traumatismo por Reperfusão , Ratos , Animais , Interleucina-13/metabolismo , Cisplatino/efeitos adversos , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Apoptose , Transdução de Sinais , Traumatismo por Reperfusão/metabolismo
14.
J Immunol Methods ; 526: 113619, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272178

RESUMO

A prominent inflammatory cell type in allergic diseases is the eosinophil, a granulated white blood cell that releases pro-inflammatory cytokines. Eosinophil-derived cytokines, including interleukin-9 (IL-9) and interleukin-13 (IL-13), can skew the immune response towards an allergic phenotype. Unfortunately, it is challenging to immunolabel and collect quantifiable images of eosinophils given their innate autofluorescence and ability to nonspecifically bind to antibodies. Hence, it is important to optimize permeabilization, blocking, and imaging conditions for eosinophils. Here, we show enhanced protocols to ensure that measured immunofluorescence represents specific immunolabelling. To test this, eosinophils were purified from human blood, adhered to glass coverslips, stimulated with or without platelet-activating factor (PAF), fixed with paraformaldehyde, and then permeabilized with Triton X-100 or saponin. Cells were then blocked with goat serum or human serum and incubated with antibodies labelling cytokines (IL-9 and IL-13) and secretory organelles (CD63 for crystalloid granules and transferrin receptor [TfnRc] for recycling endosomes). Carefully selected isotype controls were used throughout, and cells were imaged using Deltavision super-resolution microscopy. Intensities of fluorescent probes were quantified using Volocity software. Our findings show that permeabilization with saponin, blockage with human serum, and using concentrations of antibodies up to 10 µg/ml allowed us to detect marked differences in fluorescence intensities between isotypes and test antibodies. With the achievement of sufficient qualitative and quantitative measures of increased test probe intensity compared to respective isotypes, these results indicate that our protocol allows for optimal immunolabelling of eosinophils. Using this protocol, future studies may provide further insights into trafficking mechanisms within this important inflammatory cell type.


Assuntos
Eosinófilos , Saponinas , Humanos , Interleucina-9/metabolismo , Interleucina-13/metabolismo , Citocinas/metabolismo , Imunofluorescência , Saponinas/metabolismo
15.
Biomed Pharmacother ; 171: 116082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242036

RESUMO

To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Humanos , Ratos , Masculino , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Lipocalina-2/metabolismo , Artéria Renal/metabolismo , Cloreto de Sódio , Interleucina-13/metabolismo , Ratos Wistar , Rim , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Polifenóis/farmacologia , Água/farmacologia
16.
Allergy ; 79(4): 894-907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279910

RESUMO

BACKGROUND: Nasal epithelial cells are important regulators of barrier function and immune signaling; however, in allergic rhinitis (AR) these functions can be disrupted by inflammatory mediators. We aimed to better discern AR disease mechanisms using transcriptome data from nasal brushing samples from individuals with and without AR. METHODS: Data were drawn from a feasibility study of individuals with and without AR to Timothy grass and from a clinical trial evaluating 16 weeks of treatment with the following: dupilumab, a monoclonal antibody that binds interleukin (IL)-4Rα and inhibits type 2 inflammation by blocking signaling of both IL-4/IL-13; subcutaneous immunotherapy with Timothy grass (SCIT), which inhibits allergic responses through pleiotropic effects; SCIT + dupilumab; or placebo. Using nasal brushing samples from these studies, we defined distinct gene signatures in nasal tissue of AR disease and after nasal allergen challenge (NAC) and assessed how these signatures were modulated by study drug(s). RESULTS: Treatment with dupilumab (normalized enrichment score [NES] = -1.73, p = .002) or SCIT + dupilumab (NES = -2.55, p < .001), but not SCIT alone (NES = +1.16, p = .107), significantly repressed the AR disease signature. Dupilumab (NES = -2.55, p < .001), SCIT (NES = -2.99, p < .001), and SCIT + dupilumab (NES = -3.15, p < .001) all repressed the NAC gene signature. CONCLUSION: These results demonstrate type 2 inflammation is an important contributor to the pathophysiology of AR disease and that inhibition of the type 2 pathway with dupilumab may normalize nasal tissue gene expression.


Assuntos
Anticorpos Monoclonais Humanizados , Rinite Alérgica , Transcriptoma , Humanos , Rinite Alérgica/genética , Rinite Alérgica/terapia , Alérgenos , Inflamação , Phleum , Interleucina-13/metabolismo , Imunoterapia
17.
Laryngoscope ; 134(2): 552-561, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37345652

RESUMO

OBJECTIVES: As a critical component of the epithelial barrier, tight junctions (TJs) are essential in nasal mucosa against pathogen invasion. However, the function of TJs has rarely been reported in nasal inverted papilloma (NIP). This study aims to investigate the potential factors of TJs' abnormality in NIP. METHODS: We assessed the expression of ZO-1, occludin, claudin-1, claudin-3, and claudin-7 in healthy controls and NIP by real-time quantitative polymerase chain reaction and immunofluorescent staining. The correlation between TJs expression and neutrophil count, TH 1/TH 2/TH 17 and regulatory T cell biomarkers, and the proportion of nasal epithelial cells was investigated. RESULTS: Upregulation of ZO-1, occludin, claudin-1, and claudin-7, along with downregulation of claudin-3, was found in NIP compared to control (all p < 0.05). An abnormal proportion with a lower number of ciliated cells (control vs. NIP: 37.60 vs. 8.67) and goblet cells (12.52 vs. 0.33) together with a higher number of basal cells (45.58 vs. 124.00) in NIP. Meanwhile, claudin-3 was positively correlated with ciliated and goblet cells (all p < 0.01). Additionally, neutrophils were excessively infiltrated in NIP, negatively correlated with ZO-1, but positively with claudin-3 (all p < 0.05). Furthermore, FOXP3, IL-10, TGF-ß1, IL-5, IL-13, and IL-22 levels were induced in NIP (all p < 0.01). Occludin level was negatively correlated with IL-10, IL-5, IL-13, and IL-22, whereas ZO-1 was positively with TGF-ß1 (all p < 0.05). CONCLUSION: Nasal epithelial barrier dysfunction with TJs anomalies is commonly associated with abnormal proliferation and differentiation of epithelial cells and imbalance of immune and inflammatory patterns in NIP. LEVEL OF EVIDENCE: NA Laryngoscope, 134:552-561, 2024.


Assuntos
Papiloma Invertido , Junções Íntimas , Humanos , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ocludina/metabolismo , Interleucina-13/metabolismo , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Interleucina-5/metabolismo , Células Epiteliais/metabolismo
18.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38051583

RESUMO

There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts. Moreover, IL-13 receptor deletion in macrophages impaired cardiac function and resulted in larger scars early after neonatal MI. By using a combination of recombinant IL-13 administration and cell-specific IL-13 receptor genetic deletion models, we found that IL-13 signaling specifically to macrophages mediated cardiac functional recovery after MI in adult mice. Single transcriptomics revealed a subpopulation of cardiac macrophages in response to IL-13 administration. These IL-13-induced macrophages were highly efferocytotic and were identified by high IL-1R2 expression. Collectively, we elucidated a strongly proreparative role for IL-13 signaling directly to macrophages following cardiac injury. While this pathway is active in proregenerative neonatal stages, reactivation of macrophage IL-13 signaling is required to promote cardiac functional recovery in adults.


Assuntos
Interleucina-13 , Infarto do Miocárdio , Camundongos , Animais , Interleucina-13/metabolismo , Imunidade Inata , Linfócitos/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-13/metabolismo
19.
Chem Biol Interact ; 387: 110781, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37967808

RESUMO

Osteoarthritis (OA) is a heterogeneous disease that affects the entire joint. Its pathogenesis involves hypertrophy and hyperplasia of synovial cells and polarization infiltration of macrophages, in which macrophages, as a potential target, can delay the progression of the disease by improving the immune microenvironment in OA. To investigate the role and regulatory mechanism of Carveol in cartilage and synovial macrophage reprogramming and crosstalk during the development of OA. RAW264.7 mouse macrophage cell line was mainly used to stimulate macrophages to polarization towards M1 and M2 by LPS, IL4+IL13, respectively. Different concentrations of Carveol were given to intervene, and macrophage culture medium was collected to intervene mouse C57BL6J chondrocytes. ROS assay kit, western blotting, cellular immunofluorescence, scanning microscope and section histology were used to evaluate the effect of Carveol on anti-M1-polarization, M2-polarization promotion and cartilage protection. The mouse destabilization of medial meniscus (DMM) model was observed by micro-CT scan and histology. We found that CA could inhibit the increase of macrophage inflammation level under the intervention of LPS and promote the production of M2 anti-inflammatory substances under the intervention of IL-4+IL13. In addition, Carveol activated NRF2/HO-1/NQO1 pathway and enhanced ROS clearance in chondrocytes under the intervention of macrophage culture medium. The phosphorylation of I-κBα is inhibited, which further reduces the phosphorylation of P65 downstream of nuclear factor-κB (NF-κB) signaling pathway. In addition, Carveol inhibits mitogen activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK and P-P38, and inhibits the production of inflammatory mediators. In vivo, Carveol can reduce osteophytes and bone spurs induced by DMM, reduce hypertrophy of synovial cells, reduce infiltration of macrophages, inhibit subchondral bone destruction, and reduce articular cartilage erosion. Our study suggests that synovial macrophages are potential targets for OA treatment, and Carveol is an effective candidate for OA treatment.


Assuntos
Lipopolissacarídeos , Osteoartrite , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , NF-kappa B/metabolismo , Modelos Animais de Doenças , Macrófagos , Hipertrofia/metabolismo , Condrócitos
20.
Int Arch Allergy Immunol ; 185(2): 170-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37963429

RESUMO

INTRODUCTION: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by relapsed eczema and serious pruritus. High-mobility group box 1 protein (HMGB1) is a nuclear-binding protein and serves as an alarmin to promote inflammatory responses. METHODS: In this study, we established an AD mouse model by topical use of MC903 on ears and then used a specific HMGB1-binding peptide cIY8 and a HMGB1 inhibitor of glycyrrhizin to investigate HMGB1 on fibroblast activation in the pathogenesis of AD-like symptoms. RESULTS: Topical use of cIY8 and oral use of glycyrrhizin significantly improved the MC903-induced AD-like symptoms and pathological changes of the ears and scratching behavior in an AD mouse model; cIY8 treatment inhibited the higher mRNAs of IL-1α, IL-4, IL-5, IL-13, and IL-31 in the ears. In human fibroblasts, HMGB1 caused nuclear translocation of NF-kB, and the nuclear translocation could be inhibited by pre-treatment of HMGB1 with cIY8, suggesting that NF-κB signaling pathway participates in the HMGB1-induced inflammation of AD in fibroblasts and that cIY8 effectively impedes the function of HMGB1. Glycyrrhizin inhibited the Ca2+ signaling induced by ionomycin in mouse primary fibroblasts. The fibroblast-related proteins of α-SMA, Hsp47, and vimentin and the pruritus-related proteins of IL-33 and periostin were increased in the ears of the AD mouse model, the ratio of EdU incorporation became higher in mouse fibroblasts treated with MC903, and the higher proliferation and inflammatory responses of the fibroblasts could be reversed by glycyrrhizin treatment. CONCLUSIONS: Fibroblast activation by HMGB1 is one of the critical processes in the development of inflammation and pruritus in the AD mouse model. The specific HMGB1-binding peptide cIY8 and the HMGB1 inhibitor glycyrrhizin inactivate skin fibroblasts to alleviate the inflammation and pruritus in the AD mouse model. Peptide cIY8 may be topically used to treat AD patients in the future.


Assuntos
Dermatite Atópica , Proteína HMGB1 , Animais , Humanos , Camundongos , Citocinas/metabolismo , Dermatite Atópica/etiologia , Ácido Glicirrízico/efeitos adversos , Proteína HMGB1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-13/metabolismo , NF-kappa B/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...